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On a Characterization of Multivarmate Distributions
with Applications in Reliability and Epidemiology

by

Naftali A. Langberg

ABSTRACT

Let T1, ... , T~ be positive random variables with finite means . Further

let I be the collection of all subsets of (1, ... , n}, and let ~ be a function

from the nth Euclidian space to I, that equals to J , (J £ I) at (a1, .. ., a~)

iff mm a.T. < mm a.T.. We prove that mm a.T. and ~~a , ..., a ) are m dc-
ic.J 1. ]. i i i�i�n 11 1 n

pendent random variables for every n real numbers a1, ... , a~ iff for every n

positive real numbers b1, ..., b~ and r = 1, ... , n the random variables

mm aiT~
/E ( mm a1T~) and Tr/ETr are identically distributed. Further we provide

1�isn l�i�n
an explicit formula for the distribution of ~(a1, .. ., a). Multivariate

distributions that possess the independence property are presented. Their use

in Reliability growth or decay models as well as in Mathematical Epidemiology

are discussed.

Ke:’ Words: Multivariate distribution, minima, Weibull , distribution, independence

-~~ - - 

•i_ _i.~~ -~~~ ______ ~~~ - ~~~~



V 
-

I

1. Introduction and Summary.

Introduction. Let T1, ..., T~ be positive random variables, and let

a1, ..., a~ be positive real numbers. If Ti,, ..., T~ are the initial life

lengths of n components in a series system, then a1T1, ..., a~I~ can be

regarded as the life lengths of those components at some phase of a relia-

bility growth or decay process. Let an individual be exposed to n contagious

diseases in an environment consisting of infectives and susceptibles. Then

a1T1, ... , aT may describe the times until that individual becomes an

infective from disease 1 through n respectively. If we observe a series

system, or an individual who is exposed to n diseases, only two quantities

are iden~.jfiable: (1) Time until occurence (failure, or infection) (ii)

Cause of occurence (failure due to some components, infection by some of

the disease3). The stochastic representation and analysis of the described

models simplifies if for every n positive real numbers the following two

properties hold.

Time to occurence and ca”se of occurence are independent random variables. (1.1)

Time to occurence and cause of occurence have “identifiable” distributions.(1.2)

Recently Lar.g~erg, Lanzdorf and Proschan (1978) used multivariate distri-

butions that satisfy (1.1) and (1.2) to describe and analyze a variety of

reliability growth and decay models. In the cited reference the authors con-

sidered multivariate distributions ~-.‘ith independent and dependent componerts,

as well as distributions that may o: may not be absolute continuous. A well

known family of n-dimensio-al random vectors with independent components that

satisfy (1.1) and (1.2) is the exponential one, lore specifically let

T1, ... , T~ be independent exponential random variables with means ~
Il, •..,

respectively, and let a1, .. ., a~ be positive real numbers. Then h. following

three statements hold.

_ _ _  
_
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Time to occurance is exponential with mean equal to C ~ a U ~~)~
1
~, (1.3)

j=1 3 ~

The probability of occurence due to cause i equals to (a ’v 1) ( .Z aj’1Jj’)~~(1.4)
for i = 1, •.., n.

Time to occurence and cause of occurence are independent random variables. (1.5)

Billard, Lacayo and Langberg (1978), Lacayo , Langberg (1978) and Langberg

(1978), utilized those properties of independent exponential random variables

to describe and analyze n-dimensional simple epidemics.

Summary: Lemmas instrumental to the proofs of our main results are

presented in Section 2. In Section 3 we show that condition (1.1) is equivalent

to the following statement.

For every n positive real numbers a1, ..., a~~(E mm a
~
T
~
)4 mm a.T

~ 
and

1�i�n l�i�n 1

(ET
a
) T

3 
are identically distributed random variables for j = 1, ... ,

Clearly (1.6) provides an explicit formula for the distribution of the random

time until occurence. In addition we derive in Section 3 from (1.6) an explicit

form for the distribution of the cause to occurence. Some multivariate distri-

butions which satisfy (1.6) are presented in the last Section.

L ______ - - 
- 

~~~~~~~~
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2. Preliminaries,

Let denote by (T1, T2) a positive random vector with means equal to ‘1’ ~2
respectively, by T(x) the minimum of x T1, and T2, and by F(x) the expected
value of T(x). Further let E~(x+) and F’(x-) be the right and left side

derivatives of F at the point x. Finally let G(x) be equal to ‘I(x ~ 0)F(x) ,
G (x) be the convolution of G and a uaiform distribution on r_ !~, 0], and let
g (t) be the density function of Ci~(t), n = 1, 2, ... . For reference purposes

we summarize in Lemma 2.1 without proofs some straight forward results.

Lemma 2 1 .  The following six statements hold.

F is a concave r.ondecreasing function. (2.1)

Lim F(x) = 0, and Lim F(x) = p 2. (2.2)x-.O~ x-,~

F~(x+) ET1I(T2 > xT1) and F (x-) = ET2 I(T2 � xT1). (2.3)

tim SupJG (x) - G(x)~ = 0. (2.4)

g
~ is nondecreasing in n, and Lim g (x) = G~(x+), for x in (0, ~). (2.5)

G~ (x) � G (x) , for n = 1, 2, ... , and every real number x. (2.6)

Lemma 2.2. Let x and y be real positive numbers, then

I 
F (u;) du = £nF(y) - £nF(x). (2.7)

Proof. Since by (2.6) G~(x) and C (y) are positive real numbers, we obtainy g (u) fl

that 
f G (u)4’~ 

= &nG~(y) - LnG (x). Statement (2.7) follows from (2.4), (2.5)

and the monotone convergence theorem.
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Let ~(x) be the cause of occurence function given by

{1)I(T 2 > xT1) + {2 }I(T 2 < x1
1) • (1, 2}I(T2 xT1). (2.8)

Lemma 2.3. If F (x) and 1(x) are independent random variables for every real

number x, then for z in (0, “)

~ P(T, uT )
F( z) a u2exnf-f — —

~~ 

1 
‘~u), (2.9) : 1

z

Proof. By (2.3) and the independence assumption F’(z+) equals to

z~~F (z)P(T2 > zT~). Equation (2.9) is obtained from (2.2) and (2.7).

Theorem 2.4. Let ~(x) and T(x) be independent random variables for every real

number x. Further let’s assume that t1 ~
_l
(g1~)l~’k is finite. Then

k~~

T(x) and p~~F(x)T2 are identically distributed for x in (0, ce) . (2.10)

Proof. From (2.9) we obtain that E Tk(x) = E[p~~F(x)T 2]
1
~ for k = 1, 2 

Consequently (2.10) follows from the moments property of T..,. CBreiman (1968),

pp. 182, proposition 8.49].

Remark 2.5. Since x min(x~~T1, 12) = min(T1, xT2), it follows that if the

conditions of Theorem (2.4) are satisfied, then

and ~i
1T2 are identically distributed. (2.11)

Lemma 2.6. Let T1 and 12 have positive continuous densities f1 and f 2
respectively. Further let x and y be positive real numbers , and a - yi1. If

(2.10) is satisfied, then the following two equations hold .

—- -~~~——  -— - ~~~~~
-
~~~~

—-,  
~~~~

- - . -
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P(12 > y~T1 = x} = f~
1 (x)f 2(y F~~(a))a

2 F 2(a)F’(a+). (2.12)

P(T2 � y~T1 — x} = f
’(x)f2(y F

4(a))a2 F 2(a)F’(a-). (2.13)

Proof. Equation (2.13) follows clearly from (2.12). To prove (2.12) it

suffices to r~’n~~der the case F’ (a+) = F’ (a-). A proof for this case involves

elementary calculations and is omitted .

Remark 2.7. Let Z be a positive random variable independent of (T1, 12). If

the vector 
~
T
~
, T2) satisfies (2.10), then so does (T1Z, T2Z).

Theorem 2.8. If (2.10) holds, then for every real number x the random varia-

bles ~(x) and 1(x) are independent.

P-oof. Firstly let’s assume that T1 and T2 have positive and continuous

densities f1 and f2 respectively. Since PIT(x) > t, ~(x) = {1}i =

f P[T~ > xu~T1 = ulf1(u)du , and PIT(x) > t, ~(x) = {2}] = f Pixu > 12 > tIT1=u]ffu)du.t/x t/x

the result for this particular case follows from (2.12) and (2.13). To complete

the proof, let Z1, Z2, ..., be a sequence of random variables independent of

CT1, T2), given by PCZ~ � t] = - e~~~
t
~~
)]I(t � 1), n = 1, 2 T1Z~. T2Z~

have continuous positive densities and by Remark (2.7) satisfy condition (2.10)

for n - 1, 2 Consequently ZnT(X) and F (x) are independent for every real

number x, and positive integer n. Since Zn converges in probability to 1 as

fl 4. CD the desired result follows.

Finally we note that if F~(x) and T(x) are in!ependent for every real number x,

then by (2.3) the following three equations hold for z in (0, CD).

a

-. — — - —— - — --— -—-- ---- —V — _~-__ 
_~- — —V -V -V V  -_ ~__ ——~~ --- -- ——— -——---~--— -— ———-j ————- —----——-~~~~ -.-——--..—-- - —- —~~ —.—- —.~————— .-‘ -~~---.~—
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PET2 > z T~ J z F’(z+)IP(z), (2.14)

PET2 < z Ti
] 1 — z F’(z—)/F(z). (2.15)

PET2 = z T
1
] =z~(Ff(z_ ) — F1(~+)]/F(~). (2.16)

t
~~~~ .—— -

_ _ _  ----.--~~ - V - V  “- -
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3. Main Results.

Let (T1, . .. ,  T~~) be a positive random vector with means equal respectively

to p1, ,,,
~~ ~~~~

, and let I be the set “f all nonempty subsets of {1, . . . ,  n}.

Further let T(a1, . . . ,  a ) be mm a.T., and let F(a1, . . .,  a ) be the expected
~ 1�i�n ’’

value of T(a1, . . . ,  a). We define the cause of occurence function ~(a1, . .. ,  a)

as

~ jI(rnin a~T1 < miii a1T~). (3.1)
.~~I 16J i4~

Finally let denote by statement (3.2) the following property of (T1, . . . ,  T
a

) .

There exists an integer i0 in {1, . . . ,  ~~}, such that T(a1, . .. ,  a~) and

T~ ~~ F(a1, . . . ,  an) are identically distributed for every ii positive real (3.2)
0 0

numbers a1, . . .,  a~.

For reference purposes we note that

Lemma 3.1. If (3.2) is satisfied, then the following three statements hold.

U;
’Tr, r = 1 , . . . ,  n are identically distributed random variables. (3.3)

For J e I and a1, I c J positive real numbers, mm a1T1 and p~~(E mm a~T1Y
’T

ieJ icJ (3 4)are identically distributed random variables for r = 1, . . . ,  n.

For J c I and a1, ..., a positive real numbers, miii aLT. andii 
.4 l~i�n 

1 (3.5)(mm ail.)F(ai, . . .,  a )(E mm a T )  are identically distributed random variables.
icj 1 ii icj ’’

We are ready to extend Theorems 2.4 and 2.7.

Theorem 3.2. Let ~(a1, . . .,  a~) and T(a1, . . . ,  a) be independent random variables

for every ii real numbers a1, . . .,  a . Further let assume that ti~~k ’ (9 T~)
1’1
~

- k ic~
is finite for some positive integer r in (1, . .. ,  n}. Then (3.2) holds.

-- V~~~ - —~~ —- — - -~~~~~~ ~~~V - -
~~~~~~~ 

. 
~~~~~~~~~~~~~~~~~~~~~~ 

- 
~~~~~~~~~ -~~~
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Proof. Let t~i~i k~~(E Tk )l/k be finite, and let U and U2 be respectively0 1
equal to miii a

~
T
~ 

and a
~ 
I~ . Since 

~~~~ 
U
2
) satisfies the conditions of

i�i0 0 0

Theorem (2.4), statement (3.2) follows.

Theorem 3.3. If (3.2) holds, then for every n real numbers a1, ..., a , the

random variables ~(a1, ..., a~) and T(a1, ..., an) are independent.

Proof. Let ~~~ and U , U be equal respectively to mm a.T. and mm a.T..1 2 . i i  . i ii~ .T içj
Since by (3.5) condition (2,10) is satisfied , the result is obtained by

Theorem 2.7.

Remark 3.4. Let J be in I, further let Li1, U2 be respectively equal to

mm a.T. and to mm a.T.. Finally let H(x) be equal to E riin(xLJ , U ). Ifi i  . i i  1 2icJ i4j
..., T )  satisfies (3.2), then by (2.3)

..., a) = J} = I-P (x+)( ‘ F(a1, ..., a). (3.6)

Remark 3.5. Let Z be a positive randon variable, independent of CT1, ...,

If 
~
T
~ 

..., T~~) satisfies (3.2), then so does (T1Z , ..., T Z ) .

A nonnegative random variable T has a ‘~eibu l 1 distribution with parameters

p and a if for t in (0, ~ )

P{T > t} = exp [_pta l , p a > 0. (3.7)

Let a be a positive real number and g a positive real function defined on the

nth Euclidian space. ~,Te say that a nonnegative random vector (T1, ..., T )  has

Weibull minima, if for every n positive real numbers a1, ..., a~ and t in (0, co)

P{T(a1, ..., a~) > t} = expE -g(a 1, ..., a.)t
U]. (3.8) 

— —~~~~~~~~~ — . i_
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Clearly every subset of n random variables with Weibull minima has Weibull

minima. If T is a Weibull random variable with parameters p and a then

E Tk -k/cs 7 e_Zzks
~ dz. (3.9)

Consequently if I is Weibull with a � 1 then

tti~ k
4(E T~5~~

1
~ < (3.10)

k +co

and the following corollary h..4d~:

Corollary 3.6. (1) If 
~
T
~~
, ..., T) has Weibull minima then F(a1, ..., a~) and

T(a1 ..., a~) are independent random variables for every ii positive real

numbers a1, ..., a~. (ii) 1 at l3ast one of the T.’s is Weibull with a � 1,

and ~(a1, ..., a1 ) is independent of T(a1, ..., a~) for every n real numbers

a1, ..., a~. then (T1, , , . ,  T) has Weibull minima.

Proof. Fcllow~ from Theorems 3.2, 3.3, and from (3.10).

Essary and Marsball (1974) defined a class of positive n-dimensional random

vectors that have the following property.

For J c l and a., i £ 3 positive real numbers, mm a.T. has an exponential1 1 1 
(3.11)

distribution.

Corollary 3.6 provides in particular the following characterixation of that

class.

Corollary 3.7. Let 
~
T
~~
, ..., I) be a positive random vector with at least one

exponential component. (T1, ,• ,
~~ 
T~) satisfies (3.11) 1ff ~(a1, ..., a~) and

..., a~) are independent random variables for every n real numbers a1, ..., a~.

_ _

- —— - -~~~~—— — — — -- —-— - — - V — — — - —- 
- 
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Let R(t) be a positive, strictly increasing function , that is differentiable

and converges to as t -
~ ~~. Further let h be a positive real function on the

nth Euclidian space. We say that (T1, ..., T )  has pronortional minima, if
for every n positive real numbers a1, ..., a~ and t in (0, co)

P{T(a1, ..., a )  > t}  = exp~T-h(a1, ..., ~i~~)R(t)] .  (3.12)

Finally we show that the only family of random vectors with proportional minima

is the Weibull one.

Theorem 3.10. Let (T1, ..., T~~) be a positive random vector . 
~
T
~~
, ..., T~~) (n � 2)

has proportional minima iff it has Weibuil minima.

Proof. Let 0(a) be h(a, ..., a), then R( ta) 0(a) = R(t)0(1). Consequently

= ~ ~~~ , hence i~(t) = At C for some positive real numbers A and c.
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4. Examples.

Example 4.1. Let A- ., J ~ I be nonnegative real numbers, that add up over the

sets in I to a positive number. We define the multivariate distribution of

~
T
~~
, ..., I )  for t1, tn in (0, CD) by

P(T. > t., , i = 1, ..., n} = expf- ~ A .~max t~ ], a > 0. (4.1)
3d ‘icJ

The distribution in (4.1) is an extension of the bivariate I larshall-Olkin

(1967) exponential distribution. Clearly this family of random vectors has

Weibull minima with g(a1, ..., a~) = 
~ 

X max a~~. In particular we obtain
Jel ~iEJfor Aj = 0, whenever J is not a singlton set independent Weibull random variables.

If A3 = 0 for J � (1, ,.~~, n} the multivariate distribution given by (4.1)

reduces to correlated ~ieibu11 random variables.

Example 4.2. Let A1, A2 be nonnegative real numbers. Further let y1, y2
be a sequence of positive numbers that add up to a finite real number. Finally

let b1 b2 ... be a sequence of positive real numbers. We define the bivariate

distribution (T1, 12) for t1, t2 and a in (0, CD) by

P(T1 > t1. 1 1, 2) exp{-A 1t~ - X2t~ - IX ~max (t~, t~b )i. (4.2)

This distribution has Weibull minima with g(a1, a~) equal to

+ A2a~
’ + ZA ~(ara

%
~~
). One can extend with no difficulty (4.2) to

the multivariate case, although the explicit expression becomes some what

cumbersome.

Using Remark (3.5) we can generate the following two examples.

IIi -, - ~—~—--—~~-~- ~L- 
-- --
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Example 4.3. Let (T1, ..., T) be given by (4.1) and let Z be a Weibull random

variable with parameters p and a independent of 
~
T
~~
, ..., T). The random

vector (Z4T1, ..., Z~~T~) with a survival probability at t1, ..., t~ ,

(mm t~ > 0), given by
i

+ ~ A~ max t~]~~ (4.3)

satisfies (3.2).

Example 4.4. Let (T1, ..., T~~) be given by (4.1) and let Z be a positive random

variable independent of (T1, ..., I ) with a density equal to
8+1 

1

e
_
~t
a
tB.4ap a - 1). The random vector (Z 1T1, ..., Z~~~T )  wi th a

survival probability at t1, ..., t , (mm t .  > 0) equal to

+ ~~ 
a (4.4)

satisfies (3.2).

Finally let p~, ~~
‘
~~~~
‘ 

be positive real numbers, let ~3 ~e in the set

(0, 1] and let a ~~ in 1 , ~) .  The surv~va1 probability given by

exp[- ~ p1t~~
B, (4.5)

1=1

clearly has Weibull minima with g(a1, ..., a~) equal to (Zp 1a~~)
8.

Essary and Marshall (1974) presented two bivariate distributions that have

exponential marginals and the minima of the two components is exponential , ~ lever

their joint distributions are not bivariate ~4arshal1-0lkun (1967) exponential.

The absolute contipuous distribution given in (4.5) for r~ = 1/a ~s -1

n-dimensional example for such a situation.
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